203k views
3 votes
Use the quadratic formula to solve x^2 -3x - 5 = 0. Round to two decimal places.

1 Answer

6 votes

Answer:


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=(3+√(29))/(2),\:x=(3-√(29))/(2)

Explanation:

Given the equation


x^2\:-3x\:-\:5\:=\:0

solving with the quadratic formula


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=1,\:b=-3,\:c=-5


x_(1,\:2)=(-\left(-3\right)\pm √(\left(-3\right)^2-4\cdot \:1\cdot \left(-5\right)))/(2\cdot \:1)


x_(1,\:2)=(-\left(-3\right)\pm √(29))/(2\cdot \:1)

separating the solutions


x_1=(-\left(-3\right)+√(29))/(2\cdot \:1),\:x_2=(-\left(-3\right)-√(29))/(2\cdot \:1)

solving


x=(-\left(-3\right)+√(29))/(2\cdot \:\:1)


=(3+√(29))/(2\cdot \:1)


=(3+√(29))/(2)

also solving


\:x=(-\left(-3\right)-√(29))/(2\cdot \:\:1)


=(3-√(29))/(2\cdot \:1)


=(3-√(29))/(2)


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=(3+√(29))/(2),\:x=(3-√(29))/(2)

User Bojan Nikolic
by
5.8k points