63.1k views
3 votes
Create an equation for a cubic function in standard form

Create an equation for a cubic function in standard form-example-1

1 Answer

2 votes

Answer:

f(x) = 2x³ - 10x² - 34x + 42

Explanation:

The standard form of a cubic equation is f(x) = ax³ + bx² + cx + d

Given conditions are:

First: Zeros of the cubic function are - 3, 1, and 7

Second: f(- 2) = 54

a(-3)³ + b(-3)² + c(-3) + d = 0 ⇔ - 27a + 9b - 3c + d = 0 ...... (1)

a + b + c + d = 0 ......... (2)

a(7)³ + b(7)² + c(7) + d = 0 ⇔ 343a + 49b + 7c + d = 0 ....... (3)

a(-2)³ + b(-2)² + c(-2) + d = 54 ⇔ - 8a + 4b - 2c + d = 54 ...... (4)

We have 4 equations with 4 unknown variables.

Use Cramer's rule to solve the system

A =
\left[\begin{array}{cccc}-27&9&-3&1\\1&1&1&1\\343&49&7&1\\-8&2&-2&1\end{array}\right] = 6,480


A_(a) =
\left[\begin{array}{cccc}0&9&-3&1\\0&1&1&1\\0&49&7&1\\54&2&-2&1\end{array}\right] = 12,960


A_(b) =
\left[\begin{array}{cccc}-27&0&-3&1\\1&0&1&1\\343&0&7&1\\-8&54&-2&1\end{array}\right] = - 64,800


A_(c) =
\left[\begin{array}{cccc}-27&9&0&1\\1&1&0&1\\343&49&0&1\\-8&2&54&1\end{array}\right] = - 220,320


A_(d) =
\left[\begin{array}{cccc}-27&9&-3&0\\1&1&1&0\\343&49&7&0\\-8&2&-2&54\end{array}\right] = 272,160

a =
(A_(a) )/(A) = 2

b =
(A_(b) )/(A) = - 10

c =
(A_(c) )/(A) = - 34

d =
(A_(d) )/(A) = 42

f(x) = 2x³ - 10x² - 34x + 42

Create an equation for a cubic function in standard form-example-1
Create an equation for a cubic function in standard form-example-2
User Simon Sanderson
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories