Let's solve ~
We can use section formula to find the mid - point of the given line segment as it divied the line segment into ratio of 1 : 1
Let the coordinates of mid - point be (x , y)
![\qquad \sf \dashrightarrow \: x = (mx_2 - nx_1)/(m + n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/d8t5br0t60ej0ghb0rugbp7790vqwsw26v.png)
![\qquad \sf \dashrightarrow \: y= (my_2 - ny_1)/(m + n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pqy6sxr65a1jujn8fnrfh1vq2niah5s68k.png)
here,
The ratio is m : n ~ i.e equivalent to 1 : 1, meaning m = n = 1.
![\qquad \sf \dashrightarrow \: x = (4 - ( - 2))/(1 + 1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/brfcqliuzksyhbmxjes4e5z1hjbccnxlwc.png)
![\qquad \sf \dashrightarrow \: x = (4 + 2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rgvgpvr1vqhmcgrh9qqi2p9gvq7cltl8bm.png)
![\qquad \sf \dashrightarrow \: x = (6)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/84g5yushk9s77a1mnr4fxix7tz4eos4ecp.png)
![\qquad \sf \dashrightarrow \: x = 3](https://img.qammunity.org/2023/formulas/mathematics/college/ksoykbem9ao6b65ottx6y3jx662f1vv0bu.png)
similarly ~
![\qquad \sf \dashrightarrow \: y= (6 - ( - 2))/(1 + 1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qa6nyio7skm75qz26605r7icz7628sb083.png)
![\qquad \sf \dashrightarrow \: y= (6 + 2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6qh12opgcz6fde17gyhmgaw6684qvivk98.png)
![\qquad \sf \dashrightarrow \: y= (8)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/igwrax5bnyuuh8yiuo4rk9tj2l7h4t5rg4.png)
![\qquad \sf \dashrightarrow \: y = 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/4akbpcc0ekowu0a4xag6sqmofv6ll8dm8y.png)
So, the midpoint of the line segment has coordinates: