Answer:
∠AMC = 75
Explanation:
ΔABC,
∠C = 90° ; ∠B = 30°
∠A + ∠B +∠C = 180 {Angle sum property of triangle}
∠A + 30 + 90 = 180
∠A + 120 = 180
∠A = 180 - 120
∠A = 60°
In ΔACM,
∠ACM = 90/2 = 45° { CM is angle bisector}
∠ACM + ∠AMC +∠A = 180 {angle sum property}
45 + ∠AMC + 60 = 180
∠AMC + 105 = 180
∠AMC = 180 - 105
∠AMC = 75