373,862 views
22 votes
22 votes
Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal places.​

Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal-example-1
User SSBakh
by
2.8k points

2 Answers

11 votes
11 votes

Both are Cylinders

#1

  • r=12in
  • h=18in

LSA

  • 2πrh
  • 2π(12)(18)
  • 432π
  • 1356.48in²

TSA

  • 2πr(h+r)
  • 2π(12)(12+18)
  • 30(24π)
  • 720π
  • 2260.8in²

Volume

  • πr²h
  • π(12)²(18)
  • 144(18π)
  • 8138.88in³

Note:-

Nothing rounded as we got all answers till 2 decimals.

#2

  • r=5cm
  • h=15cm

LSA

  • 2πrh
  • 2π(5)(15)
  • 150π
  • 471.00cm²

TSA

  • 2πr(h+r)
  • 2π(5)(5+15)
  • 200π
  • 628.00cm²

Volume

  • πr²h
  • π(5)²(15)
  • 375π
  • 1177.50cm³

Same Note

User Madhuri H R
by
3.1k points
12 votes
12 votes

Answer:

Lateral Surface Area: The total surface area of a three-dimensional object, excluding the bases.

Formulae


  • \textsf{Lateral Surface Area of a cylinder}=\sf 2\pi rh

  • \textsf{Total Surface Area of a cylinder}=\sf 2 \pi r^2+2\pi rh

  • \textsf{Volume of a cylinder}=\sf \pi r^2 h


\textsf{(where r is the radius and h is the height)}

Question 9

Given:

  • r = 12 in
  • h = 18 in

Substituting the given values into the formulas:


\implies \sf L.A.=2 \pi (12)(18)=432 \pi=1357.17\:\:in^2\:(2\:d.p.)


\implies \sf T.A.=2 \pi (12)^2+2 \pi (12)(18)=720\pi=2261.95\:\:in^2\:(2\:d.p.)


\implies \sf Vol.=\pi (12)^2(18)=2592\pi=8143.01\:\:in^3\:(2\:d.p.)

Question 10

Given:

  • r = 5 cm
  • h = 15 cm

Substituting the given values into the formulas:


\implies \sf L.A.=2 \pi (5)(15)=150 \pi=471.24\:\:cm^2\:(2\:d.p.)


\implies \sf T.A.=2 \pi (5)^2 + 2 \pi (5)(15)=200 \pi=628.32\:\:cm^2\:(2\:d.p.)


\implies \sf Vol.=\pi (5)^2(15)=375 \pi=1178.10\:\:cm^3\:(2\:d.p.)

User Siera
by
3.2k points