226k views
25 votes
Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal places.​

Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal-example-1
User JarMan
by
8.4k points

2 Answers

2 votes

Both are Cylinders

#1

  • r=12in
  • h=18in

LSA

  • 2πrh
  • 2π(12)(18)
  • 432π
  • 1356.48in²

TSA

  • 2πr(h+r)
  • 2π(12)(12+18)
  • 30(24π)
  • 720π
  • 2260.8in²

Volume

  • πr²h
  • π(12)²(18)
  • 144(18π)
  • 8138.88in³

Note:-

Nothing rounded as we got all answers till 2 decimals.

#2

  • r=5cm
  • h=15cm

LSA

  • 2πrh
  • 2π(5)(15)
  • 150π
  • 471.00cm²

TSA

  • 2πr(h+r)
  • 2π(5)(5+15)
  • 200π
  • 628.00cm²

Volume

  • πr²h
  • π(5)²(15)
  • 375π
  • 1177.50cm³

Same Note

User Expenguin
by
8.7k points
12 votes

Answer:

Lateral Surface Area: The total surface area of a three-dimensional object, excluding the bases.

Formulae


  • \textsf{Lateral Surface Area of a cylinder}=\sf 2\pi rh

  • \textsf{Total Surface Area of a cylinder}=\sf 2 \pi r^2+2\pi rh

  • \textsf{Volume of a cylinder}=\sf \pi r^2 h


\textsf{(where r is the radius and h is the height)}

Question 9

Given:

  • r = 12 in
  • h = 18 in

Substituting the given values into the formulas:


\implies \sf L.A.=2 \pi (12)(18)=432 \pi=1357.17\:\:in^2\:(2\:d.p.)


\implies \sf T.A.=2 \pi (12)^2+2 \pi (12)(18)=720\pi=2261.95\:\:in^2\:(2\:d.p.)


\implies \sf Vol.=\pi (12)^2(18)=2592\pi=8143.01\:\:in^3\:(2\:d.p.)

Question 10

Given:

  • r = 5 cm
  • h = 15 cm

Substituting the given values into the formulas:


\implies \sf L.A.=2 \pi (5)(15)=150 \pi=471.24\:\:cm^2\:(2\:d.p.)


\implies \sf T.A.=2 \pi (5)^2 + 2 \pi (5)(15)=200 \pi=628.32\:\:cm^2\:(2\:d.p.)


\implies \sf Vol.=\pi (5)^2(15)=375 \pi=1178.10\:\:cm^3\:(2\:d.p.)

User EugeneZ
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories