Answer:
The function
describes the arithmetic sequence.
Explanation:
Given the sequence
-1, 1, 3, 5, 7, 9, 11, 13
An arithmetic sequence has a constant difference 'd' is defined by
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
Compute the differences between all the adjacent terms:
![1-\left(-1\right)=2,\:\quad \:3-1=2,\:\quad \:5-3=2,\:\quad \:7-5=2,\:\quad \:9-7=2,\:\quad \:11-9=2,\:\quad \:13-11=2](https://img.qammunity.org/2021/formulas/mathematics/college/qq8znc5uvivh00gudxu2z8i50j750a7ani.png)
As the difference between all of the adjacent terms is the same and equal to
![d=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o0f9fjb5rqo0af5phn61yp1w3km2y5rfn4.png)
As the first element is
![a_1=-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t1vnyakh492b9908oz9lgy4ut33oh56bki.png)
so the term will be:
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
![a_n=2\left(n-1\right)-1](https://img.qammunity.org/2021/formulas/mathematics/college/9czszgf6ynwlewy8vsqr445decfo2fdfbr.png)
![a_n=2n-3](https://img.qammunity.org/2021/formulas/mathematics/college/afop43qx9r9t03fxmy2e0aos555fhsm5rt.png)
So, the function
describes the arithmetic sequence.