Answer:
Arc Measure: equal to the measure of its corresponding central angle.
Formulas
![\textsf{Arc length}=2 \pi r\left((\theta)/(360^(\circ))\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/c54m07slifj3fsgqidbujn9zdvrgs79xlx.png)
![\textsf{Area of a sector of a circle}=\left((\theta)/(360^(\circ))\right) \pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/pk1yj4xjo569po2u8pxmaol0tuv9a34vvv.png)
![\textsf{(where r is the radius and the angle }\theta \textsf{ is measured in degrees)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c5xxqmjt7drs83k44ffyh3byeiut2p69tj.png)
Question 39
Given:
- r = 7 in
= 90°
Substitute the given values into the formulas:
Arc AB = 90°
![\textsf{Arc length of AB}=2 \pi (7) \left((90^(\circ))/(360^(\circ))\right)=3.5 \pi=11.00\:\sf in\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/20ldlmmp8u0ah7vt448jlp7nwkbbz0uomy.png)
![\textsf{Area of the sector AQB}=\left((90^(\circ))/(360^(\circ))\right) \pi (7)^2=(49)/(4) \pi=38.48\:\sf in^2\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/g3cf1eze0dei419ae7r0n4b4p9qnu3upky.png)
Question 40
Given:
- r = 6 ft
= 120°
Substitute the given values into the formulas:
Arc AB = 120°
![\textsf{Arc length of AB}=2 \pi (6) \left((120^(\circ))/(360^(\circ))\right)=4\pi=12.57\:\sf ft\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/s1ea9hxjqpl0exu2cnnhsvpbwsa1jvwpu2.png)
![\textsf{Area of the sector AQB}=\left((120^(\circ))/(360^(\circ))\right) \pi (6)^2=12 \pi=37.70\:\sf ft^2\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/82bsqw4wzihatcothoqjmvtbweec6px1o9.png)
Question 41
Given:
- r = 12 cm
= 45°
Substitute the given values into the formulas:
Arc AB = 45°
![\textsf{Arc length of AB}=2 \pi (12) \left((45^(\circ))/(360^(\circ))\right)=3 \pi=9.42\:\sf cm\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/1hxubjlgm9js89am9zkksv8rasbxld3nst.png)
![\textsf{Area of the sector AQB}=\left((45^(\circ))/(360^(\circ))\right) \pi (12)^2=18 \pi=56.55\:\sf cm^2\:(2\:d.p.)](https://img.qammunity.org/2023/formulas/mathematics/college/nzzssqmdhemv19o9m82tydchflcg54ufvg.png)