Use the rules of exponents and logarithms to solve the equation.
![\bf{(1)/(16)*4^(x)=64 }](https://img.qammunity.org/2023/formulas/mathematics/college/hw4cebz5p3sovoq9eye6i2g5zgun7bepha.png)
Multiply both sides by 16.
![\bf{4^(x)=1024 }](https://img.qammunity.org/2023/formulas/mathematics/college/ixfhpxj31453lbby6n3xq88xcdav49ag80.png)
Take the logarithm of the two sides of the equation.
![\bf{log(4^(x) )=log(1024) }](https://img.qammunity.org/2023/formulas/mathematics/college/7nuuszikmnsyymg3ky5eaybwqabv3o0943.png)
The logarithm of a number raised to a power is the power multiplied by the logarithm of the number.
![\bf{x \ log(4)=log(1024) }](https://img.qammunity.org/2023/formulas/mathematics/college/fg3gk4yjsnuz8742t51qmwk2fp77v5fpdf.png)
Divide the two sides by log(4).
![\bf{x=(log(1024))/(log(4)) }](https://img.qammunity.org/2023/formulas/mathematics/college/rq5h35blq1eapquuvzov0w2i8aamhdcmzj.png)
By the base change formula
![\bf{(log(a))/(log(b))=log_(b)(a). }](https://img.qammunity.org/2023/formulas/mathematics/college/lfh2glis3zeh201xi9rv9mx0vshju1f43k.png)
![\bf{x=log_(4)(1024) }](https://img.qammunity.org/2023/formulas/mathematics/college/27n5cbba7g47baoae9a3df14mk0pm56d6q.png)
x = 5 ====> Answer