162,585 views
14 votes
14 votes
Show that 2x +1 is a factor of 2x3 +5x2+4x+1 and factories completely

User Suyash Gaur
by
2.9k points

1 Answer

19 votes
19 votes


\text{According to the factor theorem, if f(b) = 0, then x-b is a factor of f(x).}\\\\\text{Given that,}\\\\f(x) = 2x^3 +5x^2 +4x +1 \\\\f\left(-\frac 12 \right) = 2\left( - \frac 12 \right)^3 +5 \left( - \frac 12 \right)^2 +4 \left( - \frac 12 \right) +1 \\\\\\~~~~~~~~~~~~=-2 \cdot \frac 18 + 5 \cdot \frac 14 -2 +1 \\\\\\~~~~~~~~~~~=\frac 54 -\frac14 -1\\\\\\~~~~~~~~~~~=\frac 44 -1 \\\\\\~~~~~~~~~~~=1-1\\\\\\~~~~~~~~~~~=0\\\\\text{So,}~ 2x +1 ~ \text{is a factor of f(x).}


\text{Now,}\\\\f(x) = 2x^3 +5x^2 +4x +1 \\\\~~~~~~=2x^3+x^2 +2x^2 +2x +2x+1\\\\~~~~~~=x^2(2x+1) +2x(2x+1) + (2x+1)\\\\~~~~~~=(2x+1)(x^2 +2x +1)\\\\~~~~~~=(2x+1)(x+1)^2

User Freshblood
by
3.2k points