Answer: The measure of the middle angle = 52°
Explanation:
Let x = Smallest angle.
largest angle =
![3x-32](https://img.qammunity.org/2021/formulas/mathematics/high-school/djud1t2xwci3h41uf4w2akedy7uar9sfqn.png)
Middle angle=
![8+\frac12 (3x-32)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kh2rc2jc5fig2m2yx7gy4an7omweyck4ot.png)
Sum of all angles in a triangle is 180 degrees.
So, Smallest angle+ largest angle+ Middle angle = 180°
![\Rightarrow\ x+8+\frac12 (3x-32)+3x-32=180\\\\\Rightarrow\ 4x-24+(3x)/(2)-16=180\\\\\Rightarrow\ (2*4x+3x)/(2)-40=180\\\\\Rightarrow\ (11x)/(2)-40=180\\\\\Rightarrow\ (11x)/(2)=220\\\\\Rightarrow\ x=(220*2)/(11)\\\\\Rightarrow\ x= 40](https://img.qammunity.org/2021/formulas/mathematics/high-school/xc0qab0ibvih7gur9sljokvlms68jlhijq.png)
Now , Middle angle=
![8+\frac12 (3(40)-32)=8+\frac12 (120-32)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p3kyam72jlf8e4r3n69mx09k4vs3qgr7pm.png)
![=8+\frac12 (88)\\\\=8+44\\\\=52](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqf815vzy1q1ds1mggavue32vsf2sxc9fw.png)
Hence, the measure of the middle angle = 52°