The formula for finding variables in a Venturi tube is shown below:
- The speed of the gasoline
P₁ - P₂ = (ρ/2)(V₂² - V₁²)
where, P₁ - P₂ is difference in pressure of Inlet and outlet, ρ = density, V₂ = exit velocity and V₁ is inlet velocity
P₁ - P₂ = 1.2 KPa = 1200 Pa
ρ = 7.4 x 10² kg/m³
V₂ = Exit Velocity = ?
V₁ = Inlet Velocity
We then substitute the variables into this equation.
P₁ - P₂ = (ρ/2)(V₂² - V₁²)
1200 Pa = [(7.4 x 10²kg/m³)/2](V₂² - V₁²)
V₂² - V₁² = (1200 Pa)/(3.7 x 10² kg/m³)
V₂² - V₁² = 3.24 m²/s² ------ equation (1)
The continuity equation A₁V₁ = A₂V₂ is then used
where,A₁ = Inlet area = πd₁²/4 = π(0.0374 m)²/4 = 1.098 x 10⁻³ m²
A₂ = Exit Area = πd₂²/4 = π(0.0187 m)²/4 = 2.746 x 10⁻⁴ m²
(1.098 x 10⁻³ m²)V₁ = (2.746 x 10⁻⁴ m²)V₂
V₁ = (2.746 x 10⁻⁴ m²)V₂/(1.098 x 10⁻³ m²)
V₁ = 0.25 V₂
We then substitute the value into equation 1
V₂² - (0.25 V₂)² = 3.24 m²/s²
0.9375 V₂² = 3.24 m²/s²
V₂² = (3.24 m²/s²)/0.9375
V₂ = √(3.456 m²/s²)
V₂ = 1.86 m/s
- The fluid flow rate we use the following equation:
This can be calculated using the formula
Flow Rate = Q = A₂V₂
= (2.746 x 10⁻⁴ m²)(1.86 m/s)
= 5.1 x 10⁻⁴ m³/s