80.0k views
0 votes
Find the derivative:
f(x)=tan
(x^(2) +5)

1 Answer

4 votes

Answer:


2x \sec^2 (x^2 + 5)

Explanation:


f(x) = \tan (x^2 + 5)


(d)/(dx) \tan u = \sec^2 u (d)/(dx) u


(d)/(dx) \tan (x^2 + 5) = \sec^2 (x^2 + 5) (d)/(dx) (x^2 + 5)


(d)/(dx) \tan (x^2 + 5) = [\sec^2 (x^2 + 5)]2x


(d)/(dx) \tan (x^2 + 5) = 2x \sec^2 (x^2 + 5)

User Tsimbalar
by
8.2k points