127k views
1 vote
If y= 1-x+x²/1+x-x² than how about y'=?
This question is about derived function.

1 Answer

1 vote

Answer:

as


(d)/(dx)\left(1-x+(x^2)/(1)+x-x^2\right)=0

so


y'=0

Explanation:

Given the function


y=\:1-x+(x^2)/(1)+x-x^2

Taking derivative


(d)/(dx)\left(1-x+(x^2)/(1)+x-x^2\right)


\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'


=(d)/(dx)\left(1\right)-(d)/(dx)\left(x\right)+(d)/(dx)\left((x^2)/(1)\right)+(d)/(dx)\left(x\right)-(d)/(dx)\left(x^2\right)

as


(d)/(dx)\left(1\right)=0
\mathrm{Derivative\:of\:a\:constant}:\quad (d)/(dx)\left(a\right)=0


(d)/(dx)\left(x\right)=1
\mathrm{Apply\:the\:common\:derivative}:\quad (d)/(dx)\left(x\right)=1


(d)/(dx)\left((x^2)/(1)\right)=2x
\mathrm{Apply\:the\:Power\:Rule}:\quad (d)/(dx)\left(x^a\right)=a\cdot x^(a-1)


(d)/(dx)\left(x\right)=1
\mathrm{Apply\:the\:common\:derivative}:\quad (d)/(dx)\left(x\right)=1


(d)/(dx)\left((x^2)/(1)\right)=2x
\mathrm{Apply\:the\:Power\:Rule}:\quad (d)/(dx)\left(x^a\right)=a\cdot x^(a-1)

substituting all the values in the expression


=(d)/(dx)\left(1\right)-(d)/(dx)\left(x\right)+(d)/(dx)\left((x^2)/(1)\right)+(d)/(dx)\left(x\right)-(d)/(dx)\left(x^2\right)


=0-1+2x+1-2x


=0

Hence,


(d)/(dx)\left(1-x+(x^2)/(1)+x-x^2\right)=0

Therefore,


y'=0

User Franck Mesirard
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories