56.5k views
2 votes
solve the following quadratic equation using the quadratic formula and then choose the correct solution set 8x2-6x+1=0

2 Answers

7 votes

Answer:

1/4 1/2

Explanation:

User Abx
by
4.7k points
2 votes

Answer:

The solutions to the quadratic equation using the quadratic formula will be:


x=(1)/(2),\:x=(1)/(4)

Explanation:

Given the equation


8x^2-6x+1=0

solving with the quadratic formula


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=8,\:b=-6,\:c=1


x_(1,\:2)=(-\left(-6\right)\pm √(\left(-6\right)^2-4\cdot \:8\cdot \:1))/(2\cdot \:8)

as


√(\left(-6\right)^2-4\cdot \:8\cdot \:1)=2

so


x_(1,\:2)=(-\left(-6\right)\pm \:2)/(2\cdot \:8)

Separating the solution


x_1=(-\left(-6\right)+2)/(2\cdot \:8),\:x_2=(-\left(-6\right)-2)/(2\cdot \:8)

solving


x_1=(-\left(-6\right)+2)/(2\cdot \:\:8)


=(6+2)/(2\cdot \:8)


=(8)/(16)


=(1)/(2)

and


x_2=(-\left(-6\right)-2)/(2\cdot \:8)


=(6-2)/(2\cdot \:\:\:8)


=(4)/(16)


=(1)/(4)

Therefore, the solutions to the quadratic equation using the quadratic formula will be:


x=(1)/(2),\:x=(1)/(4)

User Onqtam
by
4.1k points