56.5k views
2 votes
solve the following quadratic equation using the quadratic formula and then choose the correct solution set 8x2-6x+1=0

2 Answers

7 votes

Answer:

1/4 1/2

Explanation:

User Abx
by
8.6k points
2 votes

Answer:

The solutions to the quadratic equation using the quadratic formula will be:


x=(1)/(2),\:x=(1)/(4)

Explanation:

Given the equation


8x^2-6x+1=0

solving with the quadratic formula


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=8,\:b=-6,\:c=1


x_(1,\:2)=(-\left(-6\right)\pm √(\left(-6\right)^2-4\cdot \:8\cdot \:1))/(2\cdot \:8)

as


√(\left(-6\right)^2-4\cdot \:8\cdot \:1)=2

so


x_(1,\:2)=(-\left(-6\right)\pm \:2)/(2\cdot \:8)

Separating the solution


x_1=(-\left(-6\right)+2)/(2\cdot \:8),\:x_2=(-\left(-6\right)-2)/(2\cdot \:8)

solving


x_1=(-\left(-6\right)+2)/(2\cdot \:\:8)


=(6+2)/(2\cdot \:8)


=(8)/(16)


=(1)/(2)

and


x_2=(-\left(-6\right)-2)/(2\cdot \:8)


=(6-2)/(2\cdot \:\:\:8)


=(4)/(16)


=(1)/(4)

Therefore, the solutions to the quadratic equation using the quadratic formula will be:


x=(1)/(2),\:x=(1)/(4)

User Onqtam
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories