183k views
4 votes
Identify the coordinates of the vertices of each figure after the similarity transformation.

Identify the coordinates of the vertices of each figure after the similarity transformation-example-1
User Lucha
by
7.7k points

1 Answer

4 votes

Answer:

After translation:

Translation: (x, y) → (x-6, y-8)

W'X'Y'Z' = W'(-10, 0), X'(-10, -8), Y'(-18, -4), Z'(-14, 8)

After dilation:

Dilation: (x, y) → (2x, 2y), centered at (0, 0)

W''X''Y''Z'' = W'' (-20, 0), X'' (-8, 0) , Y'' (-24, 8), Z'' (-16, 32)

Explanation:

Given the vertices of the Quadrilateral WXYZ

  • W(-4, 8)
  • X(-4, 0)
  • Y(-12, 4)
  • Z(-8, 16)

As the rule of translation is given by

Translation: (x, y) → (x-6, y-8)

So, after the translation the vertices of Quadrilateral WXYZ will be translated as:

W(-4, 8) → (x-6, y-8) ⇒ (-4-6, 8-8) = W'(-10, 0)

X(-4, 0) → (x-6, y-8) ⇒ (-4-6, 0-8) = X'(-10, -8)

Y(-12, 4) → (x-6, y-8) ⇒ (-12-6, 4-8) = Y'(-18, -4)

Z(-8, 16) → (x-6, y-8) ⇒ (-8-6, 16-8) = Z'(-14, 8)

Therefore,

W'X'Y'Z' = W'(-10, 0), X'(-10, -8), Y'(-18, -4), Z'(-14, 8)

Next, the rule of dilation is given by

Dilation: (x, y) → (2x, 2y), centered at (0, 0)

W'(-10, 0) → (2x, 2y) ⇒ (2(-10), 2(0)) = W'' (-20, 0)

X'(-4, 0) → (2x, 2y) ⇒ (2(-4), 2(0)) = X'' (-8, 0)

Y'(-12, 4) → (2x, 2y) ⇒ (2(-12), 2(4)) = Y'' (-24, 8)

Z'(-8, 16) → (2x, 2y) ⇒ (2(-8), 2(16)) = Z'' (-16, 32)

Therefore,

W''X''Y''Z'' = W'' (-20, 0), X'' (-8, 0) , Y'' (-24, 8), Z'' (-16, 32)

User Dimpiax
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories