Note: Your statement and answer options are a little ambiguous, so I am assuming you want to determine the inverse of f(x)=-x+2.
As the process is the same, so it would still clear your concept.
Answer:
![\mathrm{Inverse\:of}\:-x+2:\:\:2-x](https://img.qammunity.org/2021/formulas/mathematics/college/bc14txn9yg8uqu2wija9ey5kgpva79uluj.png)
Explanation:
Given the function
![f(x)=-x+2](https://img.qammunity.org/2021/formulas/mathematics/college/on3u41ccr0mljzv4g8n2nsqdv1flqrcz37.png)
- We know that a function h is the inverse function of f if for y=f(x), x=h(y)
Determining the inverse
![y=-x+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/9h485jp0xp640o25bkw1hnnjxteume6avw.png)
Replace x with y
![x=-y+2](https://img.qammunity.org/2021/formulas/mathematics/college/7f3m6d93oz3fcr9wqyazjjzlsr7ccjk27h.png)
solve for y
![y=2-x](https://img.qammunity.org/2021/formulas/mathematics/college/mtwh3bmumbxtrc0fliunqy22ec1ecejsg9.png)
Therefore,
![\mathrm{Inverse\:of}\:-x+2:\:\:2-x](https://img.qammunity.org/2021/formulas/mathematics/college/bc14txn9yg8uqu2wija9ey5kgpva79uluj.png)