Answer:
The equation of the line that passes through the points (-1,8) and (2,-4) is:
Explanation:
Given the points
![\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/djo6jmo85rxskff4esjjhwkzxglj1q5g8g.png)
![\left(x_1,\:y_1\right)=\left(-1,\:8\right),\:\left(x_2,\:y_2\right)=\left(2,\:-4\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a2r0n5l2zlbei0rw67wbnvbwbqsii64rgt.png)
![m=(-4-8)/(2-\left(-1\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/rtc62rujrw99h6xsng8lep7q48g8zs4lot.png)
![m=-4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7cnvdhsp4922etgx3qkez0q3fplzvq4wkc.png)
As the point-slope form of the line equation is
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rcvszur2s3ju02p6yrv6wlbv0ka5o3fy58.png)
where m is the slope.
substituting the values m = -4 and the point (-1,8)
![y-\(8\right=-4\left(x-\left(-1\right)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/f2tjgzpd39gfb111ey3bp5657nowz26og2.png)
![y-8 = -4(x+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hqu50bck4idt2p1qy4asxqk1me73kl6ziw.png)
Add 8 to both sides
![y-8+8=-4\left(x+1\right)+8](https://img.qammunity.org/2021/formulas/mathematics/high-school/qighzs4ccvdbluvs8s53v4qy4c67l8vxry.png)
![y=-4x+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jve0o3oclinhccew06ag976hrp76qswl64.png)
Therefore, the equation of the line that passes through the points (-1,8) and (2,-4) is: