43.9k views
23 votes
Find sin(2x), cos(2x), and tan(2x) from the given information.

Find sin(2x), cos(2x), and tan(2x) from the given information.-example-1
User Leobrl
by
3.2k points

1 Answer

4 votes

Since
\cot(x)=(2)/(3) and
\cot^(2) x+1=\csc^(2) x, we know that:


\left((2)/(3) \right)^(2)+1=\csc^(2) x\\\\(13)/(9)=\csc^(2) x\\\\\csc x=(√(13))/(3)

If
\csc x=(√(13))/(3), this means that
\sin x=(3)/(√(13)) and by the Pythagorean identity,


\sin^(2) x+\cos^(2) x=1\\\left((3)/(√(13)) \right)^(2)+\cos^(2) x=1\\(9)/(13)+\cos^(2) x=1\\\cos^(2) x=\frac{4}13}\\\cos x=(2)/(√(13))

  • Using the double angle formula for sine,
    \sin(2x)=2\left((3)/(√(13)) \right)\left((2)/(√(13)) \right)=\boxed{(12)/(13)}
  • Using the double angle formula for cosine,
    \cos(2x)=1-2\left((3)/(√(13)) \right)^(2)=\boxed{-(5)/(13)}
  • So, since tan=sin/cos,
    \tan (2x)=(\sin(2x))/(\cos(2x))=((12)/(13))/(-(5)/(13))=\boxed{-(12)/(5)}
Find sin(2x), cos(2x), and tan(2x) from the given information.-example-1
User Jens Tinfors
by
3.5k points