9.4k views
5 votes
A store sells candy at $.50, $1, $1.50, $2, and $3 per kilogram. you can see that the unit price of candies that $3 buy very inversely. What is the constant of variation?

User Kjurkovic
by
8.6k points

1 Answer

4 votes

Answer:

constant of variation = 3

Explanation:

Given that a store is selling different candies costing $.50, $1, $1.50, $2, and $3 per kilogram.

As given

Amount available to buy candies = $ 3

Suppose

Unit price of candies = x

Number of candies bough = y

Constant of variation = k

As we know the unit price of candies and number of candies bought vary inversely. As the unit price would increase the the number of candies bought in available amount ($3) would decrease.

So our formula to calculate formula for constant of variation would be as shown below:

k= xy →(1

Case 1

if we take unit price x to be $0.5, then we can buy 6 kg of candies in $ 3. In this case constant of variation can be found from above equation (1) as follows:

k = (0.5)(6) = 3

Case 2

if we take unit price x to be $1, then we can buy 3 kg of candies in $ 3. In this case constant of variation can be found from above equation (1) as follows:

k = (1)(3) = 3

Case 3

if we take unit price x to be $1.5, then we can buy 2 kg of candies in $ 3. In this case constant of variation can be found from above equation (1) as follows:

k = (1.5)(2) = 3

Case 4

if we take unit price x to be $2, then we can buy 1.5 kg of candies in $ 3. In this case constant of variation can be found from above equation (1) as follows:

k = (2)(1.5) = 3

Case 4

if we take unit price x to be $3, then we can buy 1 kg of candies in $ 3. In this case constant of variation can be found from above equation (1) as follows:

k = (3)(1) = 3

So, our constant of variation is 3.

User Matt Hintzke
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories