146k views
3 votes
If 9.8g water is used in electrolysis, what is the percent yield if 5.6g of oxygen was

collected after the experiment?
H20 --> H2 + O2

1 Answer

4 votes

Answer:

Approximately
64\%.

Step-by-step explanation:


\displaystyle \text{Percentage Yield} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}} * 100\%

The actual yield of
\rm O_2 was given. The theoretical yield needs to be calculated from the quantity of the reactant.

Balance the equation for the hydrolysis of water:


\rm 2\, H_2O \, (l) \to 2\, H_2\, (g) + O_2\, (g).

Note the ratio between the coefficient of
\rm H_2O\, (g) and
\rm O_2\, (g):


\displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})} = (1)/(2).

This ratio will be useful for finding the theoretical yield of
\rm O_2\, (g).

Look up the relative atomic mass of hydrogen and oxygen on a modern periodic table.


  • \rm H:
    1.008.

  • \rm O:
    15.999.

Calculate the formula mass of
\rm H_2O and
\rm O_2:


M(\mathrm{H_2O}) =2* 1.008 + 15.999 = 18.015\; \rm g \cdot mol^(-1).


M(\mathrm{O_2}) =2* 15.999 = 31.998\; \rm g \cdot mol^(-1).

Calculate the number of moles of molecules in
9.8\; \rm g of
\rm H_2O:


\displaystyle n(\mathrm{H_2O}) = \frac{m(\mathrm{H_2O})}{M(\mathrm{H_2O})} = (9.8\; \rm g)/(18.015\; \rm g \cdot mol^(-1)) \approx 0.543991\;\rm g \cdot mol^(-1).

Make use of the ratio
\displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})} = (1)/(2) to find the theoretical yield of
\rm O_2 (in terms of number of moles of molecules.)


\begin{aligned} n(\mathrm{O_2}) &= \displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})} \cdot n(\mathrm{H_2O}) \\ &\approx (1)/(2) * 0.543991\; \rm mol \approx 0.271996\; \rm mol \end{aligned}.

Calculate the mass of that approximately
0.271996\; \rm mol of
\rm O_2 (theoretical yield.)


\begin{aligned}m(\mathrm{O_2}) &= n(\mathrm{O_2}) \cdot M(\mathrm{O_2}) \\ &\approx 0.271996\; \rm mol * 31.998\; \rm g \cdot mol^(-1) \approx 8.70331 \; \rm g \end{aligned}.

That would correspond to the theoretical yield of
\rm O_2 (in term of the mass of the product.)

Given that the actual yield is
5.6\; \rm g, calculate the percentage yield:


\begin{aligned}\text{Percentage Yield} &= \frac{\text{Actual Yield}}{\text{Theoretical Yield}} * 100\% \\ &\approx (5.6\; \rm g)/(8.70331\; \rm g) * 100\% \approx 64\%\end{aligned}.

User Ben Jeffrey
by
5.8k points