To obtain the least common multiple (l.c.m), we will do it by canonical decomposition or simultaneous decomposition.
This method consists of extracting the common and uncommon prime factors, then
![\large\displaystyle\text{$\begin{gathered}\sf \left.\begin{matrix} \blue{18 \ \ \ 24 \ \ \ 36 \ \ \ 45 }\\ \ 9 \ \ \ 12 \ \ \ 18 \ \ \ 45\\ \ 9 \ \ \ \ \ 6 \ \ \ \ \ 9 \ \ \ 45\\ \ 9 \ \ \ \ \ 3 \ \ \ \ \ 9 \ \ \ 45\\ \ 3 \ \ \ \ \ 1 \ \ \ \ \ 3 \ \ \ 15\\ \ 1 \ \ \ \ \ 1 \ \ \ \ \ 1 \ \ \ \ 5\\ \ 1 \ \ \ \ \ 1 \ \ \ \ \ 1 \ \ \ \ 1 \end{matrix}\right|\begin{matrix} 2\\ 2\\ 2\\ 3\\ 3\\ 5\\ \: \end{matrix} \end{gathered}$}](https://img.qammunity.org/2023/formulas/mathematics/college/jhjco1br73hsetzqpi2i8c4e2swz4sxwp3.png)
![\sf{L.c.m.(18,24,36,45)=2*2*2*3*3*5 }](https://img.qammunity.org/2023/formulas/mathematics/college/dsnmtqdvtij0d3wkvpg05wfqbx5vag3t4w.png)
![\sf{L.c.m.(18,24,36,45)=2^(3) *3^(2) *5 }](https://img.qammunity.org/2023/formulas/mathematics/college/vl9erirhfstial35rbcxze3yscmvewc7yy.png)
![\boxed{\boxed{\sf{L.c.m.(18,24,36,45)=360 }}}](https://img.qammunity.org/2023/formulas/mathematics/college/l0f6sk6cxatkct90cbtig4jkrj9lgpxoc1.png)
Therefore, the least common multiple of 18, 24, 36 and 45 is 360.