Answer:19.4
Explanation:
A=P(1+\frac{r}{n})^{nt}
A=P(1+
n
r
)
nt
A=6500 \hspace{15px} P=3000 \hspace{15px} r=0.04 \hspace{15px} t=?
A=6500P=3000r=0.04t=?
n=4\text{ (quarterly)}
n=4 (quarterly)
6500=3000(1+\frac{0.04}{4})^{4t}
6500=3000(1+
4
0.04
)
4t
6500=3000(1.01)^{4t}
6500=3000(1.01)
4t
\frac{6500}{3000}=\frac{3000(1.01)^{4t}}{3000}
3000
6500
=
3000
3000(1.01)
4t
2.1666667=(1.01)^{4t}
2.1666667=(1.01)
4t
\log(2.1666667)=\log((1.01)^{4t})
log(2.1666667)=log((1.01)
4t
)
\log(2.1666667)=4t\log(1.01)
log(2.1666667)=4tlog(1.01)
Power Rule.
\frac{\log(2.1666667)}{4\log(1.01)}=\frac{4t\log(1.01)}{4\log(1.01)}
4log(1.01)
log(2.1666667)
=
4log(1.01)
4tlog(1.01)
t=\frac{0.3357921}{0.0172855}
t=
0.0172855
0.3357921
t=19.42624\approx 19.4 \text{ years}
t=19.42624≈19.4 years