Answer:
The 8th term of the following sequence is 9375.
Explanation:
Given the sequence
3/25, 3/5, 3, 15
As we know that a geometric sequence has a constant ratio and is defined by:
![\:a_n=a_0\cdot r^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/68xulwu0z2vs0cq8g76u3la0hvopkkwe61.png)
so
![(3)/(25),\:(3)/(5),\:3,\:15](https://img.qammunity.org/2021/formulas/mathematics/college/qoai7rexk4lcnaws9jzfs5ywft49jpiqky.png)
![((3)/(5))/((3)/(25))=5,\:\quad (3)/((3)/(5))=5,\:\quad (15)/(3)=5](https://img.qammunity.org/2021/formulas/mathematics/college/6unv5yhr7afo1vp09lzwebg44r8ninximg.png)
As the ratio 'r' is the same.
so
![r=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bzz35xl112z4q15xbqcsl48fdi17ili6w6.png)
As the first element of the sequence is
![a_1=(3)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/un0g7uak17vevurhotia2qo76t5qryb3mq.png)
Therefore, the nth term is computed by
![\:a_n=a_0\cdot r^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/68xulwu0z2vs0cq8g76u3la0hvopkkwe61.png)
![a_n=(3)/(25)\cdot \:5^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/3w8dv0lstibd99108us9j3trjh3jcxsa6n.png)
Putting n = 8 to determine the 8th term.
![a_8=5^7\cdot (3)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/j21ika7e5lv4l3640rxov8t4ud6u9sxrau.png)
![a_8=(3\cdot \:5^7)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/9lz94yi0bof9rl8df3p76qudg30sbq6d1a.png)
![=5^5\cdot \:3](https://img.qammunity.org/2021/formulas/mathematics/college/4ulzeffo2tyftvswxmdbgth9gavj30hukw.png)
![=9375](https://img.qammunity.org/2021/formulas/mathematics/college/mlhiuw40ac1lcykfeh4vs4vyxwpyrxe3zq.png)
Therefore, the 8th term of the following sequence is 9375.