73.9k views
3 votes
Consider the function f(x) = x^3 - 7x^2 - 2x + 14

What is the total number of zeros of f(x)? Explain how you got your answer.
Find the zeros of f(x). Explain your procedure as you solved it.

1 Answer

4 votes

Answer:

There are 3 zeros, which are:


x=7,\:x=-√(2),\:x=√(2)

Explanation:

Given the function


f\left(x\right)\:=\:x^3\:-\:7x^2\:-\:2x\:+\:14

To get the zeros of
f(x), set
y or
f(x) =0

so


0=x^3-7x^2-2x+14

as


x^3\:-\:7x^2\:-\:2x\:+\:14=\left(x-7\right)\left(x+√(2)\right)\left(x-√(2)\right)

so


\left(x-7\right)\left(x+√(2)\right)\left(x-√(2)\right)=0

Using the zero factor principle:


\mathrm{ \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

so


x-7=0\quad \mathrm{or}\quad \:x+√(2)=0\quad \mathrm{or}\quad \:x-√(2)=0

solving


x-7=0


  • x=7


x+√(2)=0


  • x=-√(2)


x-√(2)=0


  • x=√(2)

Therefore, there are 3 zeros, which are:


x=7,\:x=-√(2),\:x=√(2)

User Raymond Feng
by
4.6k points