300,382 views
17 votes
17 votes

cos [ arctan((12)/(5)) - arcsin ((-3)/(5))]

how would one find the answer to this question?

User Sardar Usama
by
3.0k points

1 Answer

19 votes
19 votes

Answer: -16/65

Explanation:

Drawing the right triangle (as attached) gives us that
\arctan \left((12)/(5) \right)=\arcsin \left((12)/(13) \right)

Also,
-\arcsin \left(-(3)/(5) \right)=\arcsin \left((3)/(5) \right)

This means our original expression is equal to:


\cos \left[\arcsin \left((12)/(13) \right)+\arcsin \left((3)/(5) \right) \right]

Using the cosine addition formula, which states
\cos(a+b)=\cos a \cos b-\sin a \sin b, we get this itself is equal to:


\cos \left(\arcsin \left((12)/(13) \right) \right)\cos \left(\arcsin \left((3)/(5) \right)\right)-\sin \left(\arcsin \left((12)/(13) \right) \right)\sin \left(\arcsin \left((3)/(5) \right)\right)

Since
\sin^(2) \theta+\cos^(2) \theta=1, we know that:


\sin^(2) \left(\arcsin \left((12)/(13) \right)\right)+\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=1\\\\(144)/(169) +\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=1\\\\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=(25)/(169)\\\\cos \left(\arcsin \left((12)/(13) \right)\right)=(5)/(13)

Similarly, cos(arcsin(3/5))=4/5.

This means the given expression is equal to:


\left((5)/(13) \right) \left((4)/(5) \right)-\left((12)/(13) \right) \left((3)/(5) \right)\\\\(20)/(65)-(36)/(65)=\boxed{-(16)/(65)}

cos [ arctan((12)/(5)) - arcsin ((-3)/(5))] how would one find the answer to this-example-1
User Andriy Simonov
by
2.8k points