Answer: -16/65
Explanation:
Drawing the right triangle (as attached) gives us that
![\arctan \left((12)/(5) \right)=\arcsin \left((12)/(13) \right)](https://img.qammunity.org/2023/formulas/mathematics/college/x7hd8uumcp3nho1qt8bdrark8dxjqjepsp.png)
Also,
![-\arcsin \left(-(3)/(5) \right)=\arcsin \left((3)/(5) \right)](https://img.qammunity.org/2023/formulas/mathematics/college/3s9qsvzob12cymj73k56o9c6ugcj44poy5.png)
This means our original expression is equal to:
![\cos \left[\arcsin \left((12)/(13) \right)+\arcsin \left((3)/(5) \right) \right]](https://img.qammunity.org/2023/formulas/mathematics/college/29h5fdlfwa2t6wwybhnei92kqrt0mife4g.png)
Using the cosine addition formula, which states
, we get this itself is equal to:
![\cos \left(\arcsin \left((12)/(13) \right) \right)\cos \left(\arcsin \left((3)/(5) \right)\right)-\sin \left(\arcsin \left((12)/(13) \right) \right)\sin \left(\arcsin \left((3)/(5) \right)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/cmsen1x9s0twgvdie1c4d0q026vzbsa8v8.png)
Since
, we know that:
![\sin^(2) \left(\arcsin \left((12)/(13) \right)\right)+\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=1\\\\(144)/(169) +\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=1\\\\cos^(2) \left(\arcsin \left((12)/(13) \right)\right)=(25)/(169)\\\\cos \left(\arcsin \left((12)/(13) \right)\right)=(5)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/rqfv8srkzcainokm8s1w41777fwdxu2d7i.png)
Similarly, cos(arcsin(3/5))=4/5.
This means the given expression is equal to:
![\left((5)/(13) \right) \left((4)/(5) \right)-\left((12)/(13) \right) \left((3)/(5) \right)\\\\(20)/(65)-(36)/(65)=\boxed{-(16)/(65)}](https://img.qammunity.org/2023/formulas/mathematics/college/t604rpo6e643nzquzg0o5cuv4lvn4xgqkw.png)