186k views
22 votes
Find the limit of the given problem in the picture:




Find the limit of the given problem in the picture: ​-example-1

1 Answer

6 votes


~~\lim \limits_(x \to 0) \left((1- \cos mx )/(1- \cos nx)} \right)\\\\\\=\lim \limits_(x \to 0) \left[(2\sin^2 \left((mx)/(2) \right))/(2 \sin^2 \left((nx)/(2)\right)) \right]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;\left[1-\cos 2x =2 \sin^2 x\right]\\\\\\


=\lim \limits_(x \to 0) \left[ \frac{\sin^2 \left(\frac{mx}2 \right)}{\left(\frac{mx}2 \right)^2 } } * \left((mx)/(2) \right)^2* \frac{\left(\frac{nx}2 \right)^2} {\sin^2 \left(\frac{nx}2 \right)} * \left((2)/(nx) \right)^2\right]\\\\\\=\lim \limits_(x \to 0)\left[ \left( \frac{mx}2 \right)^2 \left( (2)/(nx) \right)^2\right]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;\left[\lim \limits_(x \to 0) (\sin x)/(x) = \lim \limits_(x \to 0) (x)/( \sin x) = 1\right] \\\\\\


=\lim \limits_(x \to 0) \left( (m^2 x^2)/(4) \cdot (4)/(n^2 x^2 ) \right)\\\\\\=\lim \limits_(x \to 0) \left( (m^2)/(n^2)\right)\\ \\\\=(m^2)/(n^2)

User Docstero
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories