96.4k views
1 vote
Simplify the given expression using only positive exponents. Then complete the statements that follow. [(X^2y^3)^-1/(x^-2y^2z)^2]^2

The exponent on x is___
The exponent on y is___
The exponent on a is____

User Lusha Li
by
4.0k points

1 Answer

4 votes

Answer:

As


\:\left((\left(x^2y^3\right)^(-1))/(\left(x^(-2)y^2z\right)^2)\right)^2=x^4y^(-14)z^(-4)

  • The exponent on x is 4
  • The exponent on y is -14
  • The exponent on z is -4

Explanation:

Given the expression


\left[(\left(x^2y^3\right)^(-1))/(\left(x^(-2)y^2z\right)^2)\right]^2


\mathrm{Apply\:exponent\:rule}:\quad \left((a)/(b)\right)^c=(a^c)/(b^c)


\left((\left(x^2y^3\right)^(-1))/(\left(x^(-2)y^2z\right)^2)\right)^2=(\left(\left(x^2y^3\right)^(-1)\right)^2)/(\left(\left(x^(-2)y^2z\right)^2\right)^2)


=(\left(\left(x^2y^3\right)^(-1)\right)^2)/(\left(\left(x^(-2)y^2z\right)^2\right)^2)

as


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-1)=(1)/(a)

so the expression becomes


=((1)/(x^4y^6))/(\left(\left(x^(-2)y^2z\right)^2\right)^2)
\left(x^2y^3\right)^(-1)=(1)/(x^2y^3)

as


\mathrm{Apply\:exponent\:rule}:\quad \left(a\cdot \:b\right)^n=a^nb^n

so the expression becomes


=((1)/(x^4y^6))/((y^8z^4)/(x^8))
\left(x^(-2)y^2z\right)^2=(y^4z^2)/(x^4)

as


\mathrm{Divide\:fractions}:\quad ((a)/(b))/((c)/(d))=(a\cdot \:d)/(b\cdot \:c)

so the expression becomes


=(1\cdot \:x^8)/(x^4y^6y^8z^4)


=(x^8)/(x^4y^6y^8z^4)

as


\mathrm{Apply\:exponent\:rule}:\quad (x^a)/(x^b)=x^(a-b)

so the expression becomes


=(x^(8-4))/(y^8y^6z^4)


=(x^4)/(y^8y^6z^4)


=(x^4)/(y^(14)z^4)

as


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-1)=(1)/(a)

so the expression becomes


=x^4y^(-14)z^(-4)

Therefore,

  • The exponent on x is 4
  • The exponent on y is -14
  • The exponent on z is -4
User Shenn
by
3.9k points