Answer:
0.8958
Explanation:
Given that:
The mean
= 4959
The standard deviation
= 448
The sample size n = 43
![\mu_(\overline x) = \mu = 4959](https://img.qammunity.org/2021/formulas/mathematics/college/6b9e9zk1q2evyttogc7u0rqhsest3e2ust.png)
![\sigma __(\overline x)} = (\sigma)/(√(n))= (448)/(√(43))](https://img.qammunity.org/2021/formulas/mathematics/college/6gjrgze7gjagu173huv9c43nv3n59rr33w.png)
By applying the central limit theorem;
![\overline X \sim N \bigg( \mu_(\overline x) = 4959 , \sigma_(\overline x) = (448)/(√(43))\bigg )](https://img.qammunity.org/2021/formulas/mathematics/college/x8k70y73hxkhlzlk6u1a7mgt40d77nvx4w.png)
The purpose of this question is to calculate the probability that the mean of a sample of 43 cars would differ from the population mean by less than111 miles.
This implies that;
![P( |\mu-\overline x| <111) = p( 4959-111 < \overline X < 4959 +111)](https://img.qammunity.org/2021/formulas/mathematics/college/k8d3y4ettk9tsyi66aeu56q3qydtqops3h.png)
![= P( 4848 < \overline X < 5070)](https://img.qammunity.org/2021/formulas/mathematics/college/lcyofmv4uumxg137rz4okp403h3ck8l7qt.png)
![= P \bigg ( ( \overline x - \mu_x )/( (\sigma)/(√(n))) < Z < ( \overline x - \mu_x )/( (\sigma)/(√(n))) \bigg )](https://img.qammunity.org/2021/formulas/mathematics/college/1gloh4j4qelo2p7uci5bnkb8e6jvp90lrk.png)
![= P \bigg ( (4848 -4959 )/( (448)/(√(43))) < Z < (5070 -4959 )/( (448)/(√(43))) \bigg )](https://img.qammunity.org/2021/formulas/mathematics/college/gbuvs54cjwbicehdis4ig6h0kxvdlzcp8m.png)
![= P \bigg ( (-111 )/( 68.319) < Z < (111 )/(68.319) \bigg )](https://img.qammunity.org/2021/formulas/mathematics/college/j2d7tq3o3utrxcfzj564byptg1ydszjore.png)
![= P ( -1.6247< Z < 1.6247 )](https://img.qammunity.org/2021/formulas/mathematics/college/e79jzhhvy5o66nikhk3g2ivedbq5rey40n.png)
= P ( Z < 1.627 ) - P(Z < -1.627)
From the standard normal tables
= 0.94791 -0.05208
= 0.89583
≅ 0.8958 to four decimal places.