52.2k views
3 votes
Given the matrices: 1 2 A= 1 -1 2 1 1 B= 3 4 Calculate AB: C11 C12 [2.1] х 1 2 3 4 C21 C22 C11 = C12 = -2 C22 - C215 DONE​

Given the matrices: 1 2 A= 1 -1 2 1 1 B= 3 4 Calculate AB: C11 C12 [2.1] х 1 2 3 4 C-example-1
User Velma
by
5.4k points

2 Answers

4 votes

Answer:

Explanation:

c12: -2

c22: 8

d11: 5

d21: 11

Are the products equal? Does AB = BA?

No

User Garbagecollector
by
5.5k points
4 votes

Answer:


\:c_(11)=-2,\:\:\:c_(12)=-2


\:c_(21)=5,\:\:\:c_(22)=8

Explanation:

Given the matrices


A=\begin{pmatrix}1&-1\\ 2&1\end{pmatrix}


B=\begin{pmatrix}1&2\\ \:3&4\end{pmatrix}

Calculating AB:


\begin{pmatrix}1&-1\\ \:\:2&1\end{pmatrix}* \:\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}=\begin{pmatrix}c_(11)&c_(12)\\ \:\:\:c_(21)&c_(22)\end{pmatrix}

Multiply the rows of the first matrix by the columns of the second matrix


=\begin{pmatrix}1\cdot \:1+\left(-1\right)\cdot \:3&1\cdot \:2+\left(-1\right)\cdot \:4\\ 2\cdot \:1+1\cdot \:3&2\cdot \:2+1\cdot \:4\end{pmatrix}


=\begin{pmatrix}-2&-2\\ 5&8\end{pmatrix}

Hence,


\begin{pmatrix}c_(11)&c_(12)\\ \:\:\:c_(21)&c_(22)\end{pmatrix}=\begin{pmatrix}-2&-2\\ \:5&8\end{pmatrix}

Therefore,


\:c_(11)=-2,\:\:\:c_(12)=-2


\:c_(21)=5,\:\:\:c_(22)=8

User Natanel
by
5.0k points