34.2k views
1 vote
Find from first principles the derivative of cos x​

User Wilsonzlin
by
8.0k points

1 Answer

5 votes

Answer:

Please see the explanation.

Explanation:

Let


f\left(x\right)=cosx

By the first principle


f\:'\left(x\right)=\lim _(h\to 0)\left((f\left(x+h\right)-f\left(x\right))/(h)\right)


=\lim _(h\to 0)\left((cos\:\left(x+h\right)-cos\:x)/(h)\right)


=\lim _(h\to 0)\left[(cos\:x\:cos\:h-sin\:x\:sin\:h\:-\:cos\:x)/(h)\right]


=\lim _(h\to 0)\left[(-cos\:x\left(1-cos\:h\right)-sin\:x\:sin\:h\:)/(h)\right]


=\lim _(h\to 0)\left[(-cos\:x\left(1-cos\:h\right)\:)/(h)-(sin\:x\:sin\:h)/(h)\right]


=-cosx\:\left(\lim \:_(h\to \:0\:)(1-cos\:h)/(h)\right)-sin\:x\:\lim \:\:_(h\to \:\:0)\:\left((sin\:h)/(h)\right)


=-cosx\:\left(0\right)-sinx\left(1\right)


=-sin\:x

User LeTadas
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories