34.2k views
1 vote
Find from first principles the derivative of cos x​

User Wilsonzlin
by
3.9k points

1 Answer

5 votes

Answer:

Please see the explanation.

Explanation:

Let


f\left(x\right)=cosx

By the first principle


f\:'\left(x\right)=\lim _(h\to 0)\left((f\left(x+h\right)-f\left(x\right))/(h)\right)


=\lim _(h\to 0)\left((cos\:\left(x+h\right)-cos\:x)/(h)\right)


=\lim _(h\to 0)\left[(cos\:x\:cos\:h-sin\:x\:sin\:h\:-\:cos\:x)/(h)\right]


=\lim _(h\to 0)\left[(-cos\:x\left(1-cos\:h\right)-sin\:x\:sin\:h\:)/(h)\right]


=\lim _(h\to 0)\left[(-cos\:x\left(1-cos\:h\right)\:)/(h)-(sin\:x\:sin\:h)/(h)\right]


=-cosx\:\left(\lim \:_(h\to \:0\:)(1-cos\:h)/(h)\right)-sin\:x\:\lim \:\:_(h\to \:\:0)\:\left((sin\:h)/(h)\right)


=-cosx\:\left(0\right)-sinx\left(1\right)


=-sin\:x

User LeTadas
by
4.0k points