Answer:
The score separating the bottom 47% from the top 53% is 112.8
Explanation:
Let X denote the random variable whose values are normal with a mean of 114.5 and a standard deviation of 23.
Compute the 47th percentile as follows:
![P(X<x)=0.47\\\\P((X-\mu)/(\sigma)<(x-114.5)/(23))=0.47\\\\P(Z<z)=0.47](https://img.qammunity.org/2021/formulas/mathematics/college/6a1va901ulitbo00uyqfdkqgd8d4ihfa8q.png)
The corresponding z-value is,
z = -0.075
*Use the z-table.
Compute the value of x as follows:
![(x-114.5)/(23)=-0.075\\\\x=114.5-(0.075* 23)\\\\x=112.775\\\\x\approx 112.8](https://img.qammunity.org/2021/formulas/mathematics/college/oe2evwcnku89jkc4932miaurh41tpy02f8.png)
Thus, the score separating the bottom 47% from the top 53% is 112.8