291,379 views
1 vote
1 vote
Please help me with the below question.

Please help me with the below question.-example-1
User JohnColvin
by
2.8k points

1 Answer

16 votes
16 votes

a) Substitute
y=x^9 and
dy=9x^8\,dx :


\displaystyle \int x^8 \cos(x^9) \, dx = \frac19 \int 9x^8 \cos(x^9) \, dx \\\\ = \frac19 \int \cos(y) \, dy \\\\ = \frac19 \sin(y) + C \\\\ = \boxed{\frac19 \sin(x^9) + C}

b) Integrate by parts:


\displaystyle \int u\,dv = uv - \int v \, du

Take
u = \ln(x) and
dv=(dx)/(x^7), so that
du=\frac{dx}x and
v=-\frac1{6x^6} :


\displaystyle \int (\ln(x))/(x^7) \, dx = -(\ln(x))/(6x^6) + \frac16 \int (dx)/(x^7) \\\\ = -(\ln(x))/(6x^6) + \frac1{36x^6} + C \\\\ = \boxed{-(6\ln(x) + 1)/(36x^6) + C}

c) Substitute
y=√(x+1), so that
x = y^2-1 and
dx=2y\,dy :


\displaystyle \frac12 \int e^(√(x+1)) \, dx = \frac12 \int 2y e^y \, dy = \int y e^y \, dy

Integrate by parts with
u=y and
dv=e^y\,dy, so
du=dy and
v=e^y :


\displaystyle \int ye^y \, dy = ye^y - \int e^y \, dy = ye^y - e^y + C = (y-1)e^y + C

Then


\displaystyle \frac12 \int e^(√(x+1)) \, dx = \boxed{\left(√(x+1)-1\right) e^(√(x+1)) + C}

d) Integrate by parts with
u=\sin(\pi x) and
dv=e^x\,dx, so
du=\pi\cos(\pi x)\,dx and
v=e^x :


\displaystyle \int \sin(\pi x) \, e^x \, dx = \sin(\pi x) \, e^x - \pi \int \cos(\pi x) \, e^x \, dx

By the fundamental theorem of calculus,


\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = - \pi \int_0^1 \cos(\pi x) \, e^x \, dx

Integrate by parts again, this time with
u=\cos(\pi x) and
dv=e^x\,dx, so
du=-\pi\sin(\pi x)\,dx and
v=e^x :


\displaystyle \int \cos(\pi x) \, e^x \, dx = \cos(\pi x) \, e^x + \pi \int \sin(\pi x) \, e^x \, dx

By the FTC,


\displaystyle \int_0^1 \cos(\pi x) \, e^x \, dx = e\cos(\pi) - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx

Then


\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = -\pi \left(-e - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx\right) \\\\ \implies (1+\pi^2) \int_0^1 \sin(\pi x) \, e^x \, dx = 1 + e \\\\ \implies \int_0^1 \sin(\pi x) \, e^x \, dx = \boxed{(\pi (1+e))/(1 + \pi^2)}

e) Expand the integrand as


(x^2)/(x+1) = ((x^2 + 2x + 1) - (2x+1))/(x+1) = ((x+1)^2 - 2 (x+1)  + 1)/(x+1) \\\\ = x - 1 + \frac1{x+1}

Then by the FTC,


\displaystyle \int_0^1 (x^2)/(x+1) \, dx = \int_0^1 \left(x - 1 + \frac1{x+1}\right) \, dx \\\\ = \left(\frac{x^2}2 - x + \ln|x+1|\right)\bigg|_0^1 \\\\ = \left(\frac12-1+\ln(2)\right) - (0-0+\ln(1)) = \boxed{\ln(2) - \frac12}

f) Substitute
e^(7x) = \tan(y), so
7e^(7x) \, dx = \sec^2(y) \, dy :


\displaystyle \int (e^(7x))/(e^(14x) + 1) \, dx = \frac17 \int (\sec^2(y))/(\tan^2(y) + 1) \, dy \\\\ = \frac17 \int (\sec^2(y))/(\sec^2(y)) \, dy \\\\ = \frac17 \int dy \\\\ = \frac y7 + C \\\\ = \boxed{\frac17 \tan^(-1)\left(e^(7x)\right) + C}

User Jeanpierre
by
3.1k points