98.5k views
25 votes
Please help me with the below question.

Please help me with the below question.-example-1
User Xbito
by
7.8k points

1 Answer

0 votes

a) Substitute
y=x^9 and
dy=9x^8\,dx :


\displaystyle \int x^8 \cos(x^9) \, dx = \frac19 \int 9x^8 \cos(x^9) \, dx \\\\ = \frac19 \int \cos(y) \, dy \\\\ = \frac19 \sin(y) + C \\\\ = \boxed{\frac19 \sin(x^9) + C}

b) Integrate by parts:


\displaystyle \int u\,dv = uv - \int v \, du

Take
u = \ln(x) and
dv=(dx)/(x^7), so that
du=\frac{dx}x and
v=-\frac1{6x^6} :


\displaystyle \int (\ln(x))/(x^7) \, dx = -(\ln(x))/(6x^6) + \frac16 \int (dx)/(x^7) \\\\ = -(\ln(x))/(6x^6) + \frac1{36x^6} + C \\\\ = \boxed{-(6\ln(x) + 1)/(36x^6) + C}

c) Substitute
y=√(x+1), so that
x = y^2-1 and
dx=2y\,dy :


\displaystyle \frac12 \int e^(√(x+1)) \, dx = \frac12 \int 2y e^y \, dy = \int y e^y \, dy

Integrate by parts with
u=y and
dv=e^y\,dy, so
du=dy and
v=e^y :


\displaystyle \int ye^y \, dy = ye^y - \int e^y \, dy = ye^y - e^y + C = (y-1)e^y + C

Then


\displaystyle \frac12 \int e^(√(x+1)) \, dx = \boxed{\left(√(x+1)-1\right) e^(√(x+1)) + C}

d) Integrate by parts with
u=\sin(\pi x) and
dv=e^x\,dx, so
du=\pi\cos(\pi x)\,dx and
v=e^x :


\displaystyle \int \sin(\pi x) \, e^x \, dx = \sin(\pi x) \, e^x - \pi \int \cos(\pi x) \, e^x \, dx

By the fundamental theorem of calculus,


\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = - \pi \int_0^1 \cos(\pi x) \, e^x \, dx

Integrate by parts again, this time with
u=\cos(\pi x) and
dv=e^x\,dx, so
du=-\pi\sin(\pi x)\,dx and
v=e^x :


\displaystyle \int \cos(\pi x) \, e^x \, dx = \cos(\pi x) \, e^x + \pi \int \sin(\pi x) \, e^x \, dx

By the FTC,


\displaystyle \int_0^1 \cos(\pi x) \, e^x \, dx = e\cos(\pi) - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx

Then


\displaystyle \int_0^1 \sin(\pi x) \, e^x \, dx = -\pi \left(-e - 1 + \pi \int_0^1 \sin(\pi x) \, e^x \, dx\right) \\\\ \implies (1+\pi^2) \int_0^1 \sin(\pi x) \, e^x \, dx = 1 + e \\\\ \implies \int_0^1 \sin(\pi x) \, e^x \, dx = \boxed{(\pi (1+e))/(1 + \pi^2)}

e) Expand the integrand as


(x^2)/(x+1) = ((x^2 + 2x + 1) - (2x+1))/(x+1) = ((x+1)^2 - 2 (x+1)  + 1)/(x+1) \\\\ = x - 1 + \frac1{x+1}

Then by the FTC,


\displaystyle \int_0^1 (x^2)/(x+1) \, dx = \int_0^1 \left(x - 1 + \frac1{x+1}\right) \, dx \\\\ = \left(\frac{x^2}2 - x + \ln|x+1|\right)\bigg|_0^1 \\\\ = \left(\frac12-1+\ln(2)\right) - (0-0+\ln(1)) = \boxed{\ln(2) - \frac12}

f) Substitute
e^(7x) = \tan(y), so
7e^(7x) \, dx = \sec^2(y) \, dy :


\displaystyle \int (e^(7x))/(e^(14x) + 1) \, dx = \frac17 \int (\sec^2(y))/(\tan^2(y) + 1) \, dy \\\\ = \frac17 \int (\sec^2(y))/(\sec^2(y)) \, dy \\\\ = \frac17 \int dy \\\\ = \frac y7 + C \\\\ = \boxed{\frac17 \tan^(-1)\left(e^(7x)\right) + C}

User Shahid Ahmad
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories