Answer:
The area of shaded region is:
![13x^2+6x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/73hzq0osf63z06f5ik7ryjyops8lfv7kym.png)
Explanation:
We can see in the diagram that
![Length\ of\ gray\ rectangle = l_g = 3x+5\\Width\ of\ gray\ rectangle = w_g = 4x-3](https://img.qammunity.org/2021/formulas/mathematics/high-school/e19qsz0gq6rirp04ywxgucwifu348lz0j4.png)
The area of rectangle is given by:
Area = Length * width
Now for gray rectangle
![A_g = l_g * w_g\\= (3x+5)(4x-3)\\= 3x(4x-3)+5(4x-3)\\= 12x^2-9x+20x-15\\=12x^2+11x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/wrw2w1kvitv1hg8xfrb7qhjqpxysvrrm6e.png)
For White Rectangle:
![Length = l = 5-x\\Width = w = x\\A_w = l * w\\A_w = (5-x)(x)\\= 5x-x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/hz5h9fj9vrynag147uyfgl0yp86ufy6g4m.png)
Now,
The area of shaded region will be calculated by subtracting the area of white triangle from the gray triangle.
![A_s = A_g - A_w\\= (12x^2+11x-15) - (5x-x^2)\\=12x^2+11x-15-5x+x^2\\=12x^2+x^2+11x-5x-15\\=13x^2+6x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/64do80muisy3zy0qulx7x3b4hf7ewlhfvp.png)
Hence,
The area of shaded region is:
![13x^2+6x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/73hzq0osf63z06f5ik7ryjyops8lfv7kym.png)