198k views
4 votes
What is the solution to
6(2 - x)<-4x + 2?

1 Answer

5 votes

Answer:

Solving
6(2 - x)<-4x + 2 we get
\mathbf{x>5}

Explanation:

We need to find solution of
6(2 - x)<-4x + 2

Solving the inequality:


6(2 - x)<-4x + 2

Multiply 6 with terms inside the bracket


12-6x<-4x+2

Subtracting 12 on both sides


12-6x-12<-4x+2-12\\-6x<-4x-10

Adding 4x on both sides


-6x+4x<-4x-10+4x\\-2x<-10

Divide both sides by -2 and the inequality will be reversed i.e < will be changes to >


(-2x)/(-2)>(-10)/(-2)\\\mathbf{x>5}

So, after solving
6(2 - x)<-4x + 2 we get
\mathbf{x>5}