![\huge\boxed{\text{$74$ girls}}\ \huge\boxed{\text{$106$ boys}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/krh0oj84v2zh2cf20yl1x13et2q12ybikc.png)
Hey there! This situation can be modeled and solved using a system of equations. We'll use
to represent the number of boys and
to represent the number of girls.
![\displaystyle{\left \{ {{b+g&=180} \atop {b&=g+32} \right.}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8twzdpe0n2qhemv8fr4ohih8m6miniyztr.png)
Since we know what
equals, we can substitute it into the first equation.
![\begin{aligned}b+g&=180\\(g+32)+g&=180&&\smash\Big&&\text{Substitute.}\\2g+32&=180&&\smash\Big&&\text{Combine like terms.}\\2g&=148&&\smash\Big&&\text{Subtract $32$ from both sides.}\\g&=74&&\smash\Big&&\text{Divide both sides by $2$.}\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/v3k2kftjfjqd5ieriqhyjembqdj0rki7mi.png)
Now that we know the number of girls, use the second equation to get the number of boys.
![\begin{aligned}b&=g+32\\&=74+32&&\smash\Big&&\text{Substitute.}\\&=106&&\smash\Big&&\text{Add.}\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/vfkqrxa7otkuje60kbag6cuqzra9zs75js.png)