The sequence is arithmetic, so there is a constant difference d between consecutive terms such that
![a_(100) = a_(99) + d](https://img.qammunity.org/2023/formulas/mathematics/college/xx6k8cck1so2jxcjmv5bfyzhn79q6x57ce.png)
![a_(100) = (a_(98) + d) + d = a_(98) + 2d](https://img.qammunity.org/2023/formulas/mathematics/college/j0jmghb6l9v6x0esfl6irmaravhxftyrsf.png)
![a_(100) = (a_(97) + d) + 2d = a_(97) + 3d](https://img.qammunity.org/2023/formulas/mathematics/college/7gdmx30lpdmkcqd49y29u7dad4ml7h7qf4.png)
and so on, down to
![a_(100) = a_1 + 99d](https://img.qammunity.org/2023/formulas/mathematics/college/cnw49fkd7nj9anvghzpqt0yvll6kiqs5xs.png)
(notice the pattern of 100 = 99 + 1 = 98 + 2 = 97 + 3 = … = 1 + 99)
Solve for d :
![307 = 15 + 99d \implies 99d = 292 \implies d = (292)/(99)](https://img.qammunity.org/2023/formulas/mathematics/college/hs7hvq8vna2zng40hq5ggf7zph7vea3y3p.png)
Now, the sum of the first 100 terms of this sequence is
![\displaystyle \sum_(n=1)^(100) a_n = \sum_(n=1)^(100) \left(15 + (292)/(99)(n-1)\right) = \boxed{16100}](https://img.qammunity.org/2023/formulas/mathematics/college/utzq5s6d3rmn81yisvxow4ca9gsqyqbg4y.png)
which follows from the well-known sums
![\displaystyle \sum_(n=1)^N 1 = N](https://img.qammunity.org/2023/formulas/mathematics/college/i3xco9f3uoksdglxorzg93kbt3eh2l1xq1.png)
![\displaystyle \sum_(n=1)^N n = \frac{N(N+1)}2](https://img.qammunity.org/2023/formulas/mathematics/college/ggkklys89shbkxagyteltruv31tquaom3l.png)