Answer:
The instantaneous velocity at t = 1 will be:
Explanation:
Given the position of an object at a time
![t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mnshvy9ardk7p3uxs6w9bx3goo3k9x21wx.png)
![s\left(t\right)=-8-9t](https://img.qammunity.org/2021/formulas/mathematics/high-school/itiu2hv6a5kvguss52zj1v9o81c3iw9atm.png)
As we know that determining the derivative of the position function with respect to time t would give us the instantaneous velocity, so
![(ds)/(dt)=(d)/(dt)\left(-8-9t\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tnrn1wz1gyr3x1xfoi24arjpgbghuqc5gd.png)
Applying the sum/difference rule:
![\left(f\pm g\right)'=f\:'\pm g'](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3hhrb0o0830nsa82whjjvfr9z9yz040vgi.png)
![(ds)/(dt)=-(d)/(dt)\left(8\right)-(d)/(dt)\left(9t\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7o39wpf4ro0bn39chv2xb62v5qondrvlvn.png)
as
∵
![(d)/(dx)\left(a\right)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/wqu2vatgek183uhgu3ab2pffk37pb1oeef.png)
and
∵
and
![(d)/(dt)\left(t\right)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/60ehs04x9pk2jtb29vvg17e532xanxe0n9.png)
so the expression becomes
![(ds)/(dt)=-(d)/(dt)\left(8\right)-(d)/(dt)\left(9t\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7o39wpf4ro0bn39chv2xb62v5qondrvlvn.png)
![=-0-9](https://img.qammunity.org/2021/formulas/mathematics/high-school/pxw1sbsnafuqvtbu47xpmoup8l39tqi0qc.png)
![=-9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ryhbs9s00hxmt632dudg6ume562o9wnl2u.png)
As the derivative is constant.
Therefore, the instantaneous velocity at t = 1 will be: