124k views
24 votes

(e ^(x) + e^( - x) )
how would one find the definite integral from the 0 to 1​

User Farihah
by
7.7k points

1 Answer

12 votes


\displaystyle \int^(1)_0 \left(e^x + e^(-x) \right) dx\\\\=\displaystyle \int^(1)_0 e^x ~~dx+\displaystyle \int^(1)_0 e^(-x) ~ dx\\\\=\left[ e^x\right]^(1)_(0) -\left[e^(-x) \right]^(1)_0~~~~~~~~~~~~~~~~~~~~~~~;\left[\displaystyle \int e^(mx) ~ dx = \frac 1m e^(mx) + C \right]\\\\=\left(e^1 - e^0\right) - \left(e^(-1) - e^0\right)\\\\=(e-1)-\left(\frac 1 e - 1\right)\\\\=e-1 -\frac 1 e+1\\\\=\frac{e^2-1}e

User Tomer Omri
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories