Answer:
![\displaystyle y' = -100x^4(2x^5 - 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kz4sbu6ptzvpal0gid6ihegos5g8f855pt.png)
General Formulas and Concepts:
Pre-Algebra
Algebra I
- Terms/Coefficients
- Factoring
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s1om3rzcnorfu9si84gajpl5k6jeoialwk.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = (-4x^5 + 4)5x^5](https://img.qammunity.org/2021/formulas/mathematics/high-school/qcp2b14eonitpc2lzzn2r5d6f92df0iczm.png)
Step 2: Differentiate
- Product Rule:
![\displaystyle y' = (d)/(dx)[(-4x^5 + 4)]5x^5 + (-4x^5 + 4)(d)/(dx)[5x^5]](https://img.qammunity.org/2021/formulas/mathematics/high-school/h2blcgjkvzwwyyalnbh8k2ucop41nw9ifv.png)
- Basic Power Rule [Derivative Property - Addition/Subtraction]:
![\displaystyle y' = (5 \cdot -4x^(5 - 1) + 0)5x^5 + (-4x^5 + 4)(5 \cdot 5x^(5 - 1))](https://img.qammunity.org/2021/formulas/mathematics/high-school/7jmiszc257ott1qs0wuuvgrdepny7wusc0.png)
- Simplify:
![\displaystyle y' = (-20x^4)5x^5 + (-4x^5 + 4)(25x^4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/syl0gcxhdmlx2n098wteded1ljqr0j6whg.png)
- Factor:
![\displaystyle y' = 5x^4 \bigg[ (-20x^4)x + (-4x^5 + 4)5 \bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/u0f5dbmevzukkyhkokaqku102z88ve6p7c.png)
- [Distributive Property] Distributive parenthesis:
![\displaystyle y' = 5x^4 \bigg[ -20x^5 - 20x^5 + 20 \bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/zhxhax7vhl7n0f7tr7wemfdia9sf4nufhg.png)
- Combine like terms:
![\displaystyle y' = 5x^4(-40x^5 + 20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j3ji4cc65n38olnfs4kzac8i5fh0vvsylc.png)
- Factor:
![\displaystyle y' = -100x^4(2x^5 - 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kz4sbu6ptzvpal0gid6ihegos5g8f855pt.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e