23.0k views
1 vote

ln(xy) = e ^(x + y)
how would one differentiate this equation?​

1 Answer

4 votes


~~~~~~\ln(xy)= e^(x+y)\\\\\\\implies (d)/(dx) \ln(xy) = (d)/(dx)\left(e^(x+y) \right)\\\\\\\implies \left(\frac 1{xy}\right) (d)/(dx)(xy) =\left( e^(x+y) \right)(d)/(dx) (x+y)~~~~~~~~~~~~~~~~~;[\text{Chain rule}]\\\\\\\implies \left( \frac 1{xy} \right) \left(y + x(dy)/(dx) \right) =\left(e^(x+y)\right) \left( 1 + (dy)/(dx) \right) \\\\\\


\implies \frac 1x + \frac 1y\cdot (dy)/(dx) = e^(x+y)+ \left(e^(x+y) \right) (dy)/(dx)\\\\\\\implies y + x (dy)/(dx) = xy e^(x+y)+ \left(xy e^(x+y) \right)(dy)/(dx)~~~~~~~~~;[\text{Multiply both sides by}~ xy]\\\\\\


\implies x (dy)/(dx) -\left(xye^(x+y) \right) (dy)/(dx)= xye^(x+y) -y\\\\\\\implies \left(x - x y e^(x+y) \right) (dy)/(dx) = xye^(x+y) - y\\\\\\\implies (dy)/(dx) = (xye^(x+y) - y)/(x - x y e^(x+y))\\\\\\\implies (dy)/(dx) = (y \left(xe^(x+y) -1 \right))/(x \left(1- ye^(x+y) \right))

User Greenkode
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories