A line segment from a vertex to the midpoint of the opposite side is a "median". A median divides the area of the triangle in half, as it divides the base in half without changing the altitude.
AAMC is half AABC. AADC is half AAMC, so is 1/4 of AABC. (By the formula for area of a triangle.)
ABMC is half AABC. ABMD is half ABMC, so is 1/4 of AABC. (By the formula for area of a triangle.)
Then, AADC = 1/4 AABC = ABMC, so AADC = ABMC by the transitive property of equality.