"f o g" denotes the composition of f with g,
(f o g)(x) = f(g(x))
Given f(x) = x² + 2 and g(x) = 4x, we have
(f o g)(x) = f(4x) = (4x)² + 2
⇒ (f o g)(x) = 16x² + 2
Then (f o g)(0) = 2.
1.6m questions
2.0m answers