126k views
0 votes
Geometric Sequence S = 1.0011892 + ... + 1.0012 + 1.001 + 1

User Asiop
by
4.4k points

1 Answer

7 votes

Answer:


S_(1893) =5632.98

Explanation:

The correct form of the question is:


S = 1.001^(1892) + ... + 1.001^2 + 1.001 + 1

Required

Solve for Sum of the sequence

The above sequence represents sum of Geometric Sequence and will be solved using:


S_n = (a(1 - r^n))/(1 - r)

But first, we need to get the number of terms in the sequence using:


T_n = ar^(n-1)

Where


a = First\ Term


a = 1.001^(1892)


r = common\ ratio


r = (1)/(1.001)


T_n = Last\ Term


T_n = 1

So, we have:


T_n = ar^(n-1)


1 = 1.001^(1892) * ((1)/(1.001))^(n-1)

Apply law of indices:


1 = 1.001^(1892) * (1.001^(-1))^(n-1)


1 = 1.001^(1892) * (1.001)^(-n+1)

Apply law of indices:


1 = 1.001^(1892-n+1)


1 = 1.001^(1892+1-n)


1 = 1.001^(1893-n)

Represent 1 as
1.001^0


1.001^0 = 1.001^(1893-n)

They have the same base:

So, we have


0 = 1893-n

Solve for n


n = 1893

So, there are 1893 terms in the sequence given.

Solving further:


S_n = (a(1 - r^n))/(1 - r)

Where


a = 1.001^(1892)


r = (1)/(1.001)


n = 1893

So, we have:


S_(1893) =(1.001^(1892) *(1 -(1)/(1.001)^(1893)))/(1 -(1)/(1.001) )


S_(1893) =(1.001^(1892) *(1 -(1)/(1.001)^(1893)))/((1.001 -1)/(1.001) )


S_(1893) =(1.001^(1892) *(1 -(1)/(1.001)^(1893)))/((0.001)/(1.001) )


S_(1893) =(1.001^(1892) *(1 -(1)/(1.001^(1893))))/((0.001)/(1.001) )

Simplify the numerator


S_(1893) =(1.001^(1892) -(1.001^(1892))/(1.001^(1893)))/((0.001)/(1.001) )


S_(1893) =(1.001^(1892) -1.001^(1892-1893))/((0.001)/(1.001) )


S_(1893) =(1.001^(1892) -1.001^(-1))/((0.001)/(1.001) )


S_(1893) =(1.001^(1892) -1.001^(-1))/({(0.001)/(1.001) })


S_(1893) =(1.001^(1892) -1.001^(-1))*{(1.001)/(0.001)}


S_(1893) =((1.001^(1892) -1.001^(-1)) * 1.001)/(0.001)

Open Bracket


S_(1893) =(1.001^(1892)* 1.001 -1.001^(-1)* 1.001 )/(0.001)


S_(1893) =(1.001^(1892+1) -1.001^(-1+1))/(0.001)


S_(1893) =(1.001^(1893) -1.001^(0))/(0.001)


S_(1893) =(1.001^(1893) -1)/(0.001)


S_(1893) =5632.97970294

Hence, the sum of the sequence is:


S_(1893) =5632.98 ----- approximated

User In His Steps
by
5.1k points