222k views
5 votes
What is the Product of 2+√-121 And 3+√-64? The answer must be as a complex number in standard form. Please help​

1 Answer

5 votes

Answer:


94 + 49i

Explanation:

Given


2 + \sqrt{-121 and
3 + \sqrt{-64

Required

Determine the products

We have:


(2 + √(-121)) * (3 + √(-64))

Factorize:


2(3 + √(-64)) + √(-121) (3 + √(-64))

Open Brackets


6 + 2√(-64)+ 3√(-121) + √(-121) *√(-64)


6 + 2√(-64)+ 3√(-121) + √(-121*-64)


6 + 2√(-64)+ 3√(-121) + √(7744)

Expand the expression in square roots


6 + 2√(-1 * 64)+ 3√(-1 * 121) + √(7744)

Split roots


6 + 2√(-1) * √(64)+ 3√(-1) * √(121) + √(7744)

Take positive square roots of 64, 121 and 7744


6 + 2√(-1) * 8+ 3√(-1) * 11 + 88


6 + 16√(-1)+ 33√(-1)+ 88

Collect Like Terms


88 + 6 + 16√(-1)+ 33√(-1)


94 + 49√(-1)

A complex number in standard form is:


a + bi

Where


i = \sqrt{-1

So:


94 + 49√(-1)

=


94 + 49i

Hence:

The product of
2 + \sqrt{-121 and
3 + \sqrt{-64 is
94 + 49i

User Gaurav Joseph
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories