222k views
5 votes
What is the Product of 2+√-121 And 3+√-64? The answer must be as a complex number in standard form. Please help​

1 Answer

5 votes

Answer:


94 + 49i

Explanation:

Given


2 + \sqrt{-121 and
3 + \sqrt{-64

Required

Determine the products

We have:


(2 + √(-121)) * (3 + √(-64))

Factorize:


2(3 + √(-64)) + √(-121) (3 + √(-64))

Open Brackets


6 + 2√(-64)+ 3√(-121) + √(-121) *√(-64)


6 + 2√(-64)+ 3√(-121) + √(-121*-64)


6 + 2√(-64)+ 3√(-121) + √(7744)

Expand the expression in square roots


6 + 2√(-1 * 64)+ 3√(-1 * 121) + √(7744)

Split roots


6 + 2√(-1) * √(64)+ 3√(-1) * √(121) + √(7744)

Take positive square roots of 64, 121 and 7744


6 + 2√(-1) * 8+ 3√(-1) * 11 + 88


6 + 16√(-1)+ 33√(-1)+ 88

Collect Like Terms


88 + 6 + 16√(-1)+ 33√(-1)


94 + 49√(-1)

A complex number in standard form is:


a + bi

Where


i = \sqrt{-1

So:


94 + 49√(-1)

=


94 + 49i

Hence:

The product of
2 + \sqrt{-121 and
3 + \sqrt{-64 is
94 + 49i

User Gaurav Joseph
by
5.4k points