Answer:
The equation of a line that passes through the points (-2, 8) and (1,−1) in the fully reduced form will be:
Explanation:
Given the points
![\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/djo6jmo85rxskff4esjjhwkzxglj1q5g8g.png)
![\left(x_1,\:y_1\right)=\left(-2,\:8\right),\:\left(x_2,\:y_2\right)=\left(1,\:-1\right)](https://img.qammunity.org/2021/formulas/mathematics/college/d29nlkq7691k9cx91rj7avq4rc3fd80fmy.png)
![m=(-1-8)/(1-\left(-2\right))](https://img.qammunity.org/2021/formulas/mathematics/college/zojt3nf0wclpj49us30ryvv8bqnhwlhs8h.png)
![m=-3](https://img.qammunity.org/2021/formulas/mathematics/high-school/uutzaj5d3argnbkjq8d9wbcci13kjq5qlq.png)
As the equation of a line in point-slope form is given by:
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rcvszur2s3ju02p6yrv6wlbv0ka5o3fy58.png)
substituting the values m = -3 and the point (-2, 8)
![y-8=-3\left(x-\left(-2\right)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/1h05l683ap4d50s4heby1t8co9umv3pr7v.png)
![y-8=-3\left(x+2\right)](https://img.qammunity.org/2021/formulas/mathematics/college/co2jk8vcu9pl9hxtiaf1nycufnd2k6oonk.png)
![y-8+8=-3\left(x+2\right)+8](https://img.qammunity.org/2021/formulas/mathematics/college/vq14r1w0zorfg4u01txio4zj6se28qvcai.png)
![y=-3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tk89ufqaozvckqnrhid9hjoq89m5j4ktli.png)
Therefore, the equation of a line that passes through the points (-2, 8) and (1,−1) in the fully reduced form will be: