Given:
Vertices of △XYZ are X(-4,6), Y(6,1) and Z(1,1).
To find:
The vertices of ∆X′Y′Z′.
Solution:
According to the question, △XYZ is translated 3 units up to form the image ∆X′Y′Z′, so rule of translation is defined as
![(x,y)\to (x,y+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qea6j4stf5tpcf17x2va8z5suaxn3uc4lo.png)
Now,
![X(-4,6)\to X'(-4,6+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gg4hvcge2rus58vvh2p7an2mauuubuxckx.png)
![X(-4,6)\to X'(-4,9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2z65hr7ye1bv8x4wr4ot19cr1gryinw50w.png)
Similarly,
![Y(6,1)\to Y'(6,1+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3xd202mh45bg1m3y071nx4uld6ueakwuh9.png)
![Y(6,1)\to Y'(6,4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/93h730tzaa4ww878ijzxnzn04v3lqni4fq.png)
and,
![Z(1,1)\to Z'(1,1+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2u77nnxpr0wm346ikpm6wc6yagvfm9exaz.png)
![Z(1,1)\to Z'(1,4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gwjfpj2886rnr8pbzbahlxfbwkl2uklwbt.png)
Therefore,
.