141k views
14 votes
Please help me with the question

Please help me with the question-example-1

1 Answer

14 votes

(i) The mean is


\displaystyle E(X) = \sum_x x \, P(X = x) \\\\ E(X) = 1\cdot0.175 + 2\cdot0.315 + 3\cdot0.211 + 4\cdot0.092 + 5\cdot0.207 \\\\ \boxed{E(X) = 2.839}

The variance is


V(X) = E((X - E(X))^2) = E(X^2) - E(X)^2

Compute the second moment
E(X^2) :


\displaystyle E(X^2) = \sum_x x^2 \, P(X = x) \\\\ E(X) = 1^2\cdot0.175 + 2^2\cdot0.315 + 3^2*0.211 + 4^2*0.092 + 5^2*0.207 \\\\ E(X^2) = 9.997

Then the variance is


\boxed{V(X) \approx 1.9171}

(ii) For a random variable
Z=aX+b, where
a,b are constants, we have


E(Z) = E(aX+b) = E(aX) + E(b) = a E(X) + b

and


V(Z) = E((aX+b)^2) - E(aX+b)^2 \\\\ V(Z) = E(a^2 X^2 + 2ab X + b^2) - (a E(X) + b)^2 \\\\ V(Z) = a^2 (E(X^2) - E(X)^2) \\\\ V(Z) = a^2 V(X)

Then for
Y=\frac{X+3}2, we have


E(Y) = \frac12 E(X) + \frac32 \\\\ \boxed{E(Y) = 2.918}


E(Y^2) = E\left(\left(\frac{X+3}2\right)^2\right) = \frac14 E(X^2) + \frac32 E(X) + \frac94 \\\\ \boxed{E(Y^2) \approx 9.0028}

User Rugolinifr
by
3.4k points